Chem. Ber. 109, 2014 - 2020 (1976)

Natürlich vorkommende Terpen-Derivate, 621)

Über die Inhaltsstoffe von Senecio abrotanifolius L.

Ferdinand Bohlmann* und Albert Suwita

Institut für Organische Chemie der Technischen Universität Berlin, Straße des 17. Juni 135, D-1000 Berlin 12

Eingegangen am 10. Oktober 1975

Es werden zwei neue Sesquiterpene isoliert, ein Bisabolen-Derivat (1) sowie ein Triester mit anomalem Kohlenstoffgerüst (3). Die Konstitutionen und Konfigurationen werden durch NMR-spektroskopische Untersuchungen sowie durch einige Reaktionen geklärt. Weiterhin werden zwei Chinolderivate (7 und 8) isoliert.

Naturally Occurring Terpene Derivatives, 621)

On the Constituents of Senecio abrotanifolius L.

Two new sesquiterpenes have been isolated, a bisabolen derivative (1) as well as a triester with an anomalous carbon skeleton (3). The structures and configurations have been elucidated by n. m. r. spectroscopic investigations as well as by some reactions. Furtheron two quinol derivatives (7 and 8) have been isolated.

Die Wurzeln von Senecio abrotonifolius L. (Fam. Compositae, Tribus Senecioneae) enthalten zwei neue Sesquiterpene, die auch in den oberirdischen Teilen vorkommen. Die weniger polare Verbindung besitzt die Summenformel $C_{25}H_{34}O_7$ und ist, wie aus dem 1H -NMR-Spektrum zu entnehmen ist, ein Bisangelicat. Das 100-MHz-Spektrum in Deuteriochloroform zeigt weiterhin drei Methylsinguletts, zwei olefinische Singuletts und ein Dublett bei $\tau = 4.11$ (J = 13 Hz). Alle übrigen Signale sind nicht zu interpretierende Multipletts. Bei 270 MHz in verschiedenen Lösungsmitteln bzw. Gemischen kann man jedoch zusammen mit zahlreichen Entkoppelungen alle Signale zuordnen (s. Tab. 1). Zusammen mit dem Massenspektrum und dem NMR-Spektrum des durch Boranat-Reduktion erhaltenen Carbinols 2 sind alle Daten am besten vereinbar mit der Struktur 1 [5α ,8-Bis(angeloyloxy)-2,3:10,11-die: 3α ,9-2,3,10,11-tetrahydro- 3α -bisabol-4-on]:

 ^{61.} Mitteil.: F. Bohlmann, U. Rapp, H. Schwarz und B. Windel, Org. Mass Spectrom., im Druck.
 Die absolute Konfiguration ist nicht bekannt und hier wie bei den übrigen optisch aktiven Substanzen willkürlich angegeben.

Tab. 1. ¹H-NMR-Signale von 1 und 2 (270 MHz, TMS als innerer Standard, τ-Werte)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							۲	
dd(br) 7.98 dd(br) 7.83 $J_{1a,5} = 11$ m ≈ 8.0 ddd 7.70 ddd 7.26 $J_{1a,19} = 16$ m ≈ 7.5 ddd 7.70 ddd 7.26 $J_{1a,2} = 4$ d 6.90 d(br) 7.00 d(br) 6.37 $J_{1a,2} = 4$ d 6.90 d 4.05 d 4.19 $J_{5,6} = 13$ d 6.90 dd 4.72 dd 6.95 $J_{1a,6} = 8$ m 6.00 dd 4.72 dd 4.55 $J_{1a,9} = 8$ m ≈ 7.5 dd 4.72 dd 4.55 $J_{1a,9} = 8$ m ≈ 8.0 dd 4.75 $J_{1a,9} = 8$ m ≈ 8.0 m ≈ 8.0 t 1 7.27 $J_{9,10} = J_{9,10} = 6$ t 1 7.32 s 8.85 s 8.79 s 8.79 s 8.79 s 8.79 s 8.88 s 8.88 s 8.79 s 8.79 s 8.79 s 8.88 s 8.88 s 8.79 s 8.99 s 8.89 s 8.79 s 8.99 s 8.99 s 8.70 s 8.90 s 8.90 s 8.90 gq 4.09 gq 3.92 $J_{3.75} = J_{4.5} = 1$ gq 4.06	C,D,	C ₆ D ₆ /	CDCI3	(D ₃ C) ₂ C		J (Hz)	(D ₃ C) ₂ C0	J (Hz)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dd(br) 8.03	dd(br	96.2 (dd(br) 7.	ļ	$J_{1\beta,6} = 11$	m ≈8.0	
d(br) 7.00 d(br) 6.37 $J_{1a,2} = 4$ d $d = 6.90$ d 4.05 d 4.19 $J_{5,6} = 13$ dd 4.78 dd 4.74 ddd 6.95 $J_{1a,6} = 8$ m ≈ 7.5 dd 4.74 dd 4.55 $J_{8,9} = 8$ m ≈ 7.5 dd 4.72 dd 4.55 $J_{8,9} = 8$ m ≈ 7.5 m ≈ 8.2 m ≈ 8.0 $J_{8,9'} = 6$ m ≈ 8.0 t 7.33 t 7.27 $J_{9,10} = J_{9',10} = 6$ t 7.32 s 8.85 s 8.77 $9'_{1,0} = J_{9',10} = 6$ t 7.32 s 8.88 s 8.78 s 8.79 s 8.89 s 9.99	4dd 7.88	ppp	7.70	ddd 7.		$J_{1\alpha,1\beta}=16$	m ≈7.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d(br) 7.28	d(br)	7.00	d(br) 6.		$J_{1\alpha,2}=4$	06'9 P	J = 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ı	·	ı	ì			d(br) 6.13	<i>J</i> = 8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d 3.84	P	4.05	d 4.		$J_{5,6}=13$	dd 4.78	J = 11, 8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ddd 7.47	ppp	7.41	ddd 6.		$J_{1\alpha,6}=8$	m ≈7.5	
m ≈ 8.2 m ≈ 8.0 $J_{8.9} = 6$ m ≈ 8.0 1 7.33 1 7.27 $J_{9,10} = J_{9,10} = 6$ 1 7.32 8 8.85 8 8.77 8 8.79 8 8.88 8 8.78 8 8.81 8 5.03 8 4.85 8 4.98 8 4.85 8 8.62 8 4.85 9 4.09 9 3.85 $J_{3.4} = 7$ 9 4.85 9 4.15 9 3.92 $J_{3.5} = J_{4.5} = 1$ 9 4.06 9 4.15 9 8.02 $J_{3.5} = J_{4.5} = 1$ 9 4.06 9 8.14 0 8.08 0 9 4.06 8.11 9 8.16 0 8.14 0 8.11 0 9 8.11	dd 4.60	рp	4.72	dd 4.		$J_{8,9} = 8$	dd 4.65	J = 8, 4.5
t7.33t7.27 $J_{9,10} = J_{9,10} = 6$ s8.85s8.77s8.88s8.78s5.03s4.85s4.85s4.69s8.72s8.62qq4.09qq3.85 $J_{3,4} = 7$ qq4.15qq3.92 $J_{3,5} = J_{4,5} = 1$ qq8.14dq8.08dq8.16dq8.14	m ≈8.1	E	≈8.2	.8≈ E		$J_{8,9'} = 6$	m ≈8.0	
s8.85s8.77s8.88s8.78s5.03s4.85s4.85s4.69s8.72s8.62qq4.09qq3.85 $J_{3',4'} = 7$ qq4.15qq3.92 $J_{3',5'} = J_{4',5'} = 1$ dq8.04dq8.02dq8.14dq8.08dq8.16dq8.14	t 7.28	-	7.33	t 7.		$J_{9,10}=J_{9',10}=6$	t 7.32	
s8.88s8.78s5.03s4.85s4.85s4.69s8.72s8.62qq4.09qq3.85 $J_{3',4'} = 7$ qq4.15qq3.92 $J_{3',5'} = J_{4',5'} = 1$ dq8.04dq8.02dq8.14dq8.08dq8.16dq8.14	s 8.88	s	8.85	s s			s 8.79	
s5.03s4.85s4.85s4.69s8.72s8.62qq4.09qq3.85 $J_{3',4'} = 7$ qq4.15qq3.92 $J_{3',5'} = J_{4',5'} = 1$ dq8.04dq8.02dq8.14dq8.08dq8.16dq8.14	s 8.91	s	8.88	s 8			s 8.81	
s4.85s4.69s8.72s8.62qq4.09qq3.85 $J_{3',4'} = 7$ qq4.15qq3.92 $J_{3',5'} = J_{4',5'} = 1$ dq8.04dq8.02dq8.14dq8.08dq8.16dq8.14	s 5.09	ø	5.03	s 4.	85		s 4.98	
s8.72s8.62qq4.09qq3.85 $J_{3',4'} = 7$ qq4.15qq3.92 $J_{3',5'} = J_{4',5'} = 1$ dq8.04dq8.02dq8.14dq8.08dq8.16dq8.14	s 4.87	s	4.85	s . 4.	69		s 4.85	
qq 4.09 qq 3.85 $J_{3,4'} = 7$ qq 4.15 qq 3.92 $J_{3',5'} = J_{4',5'} = 1$ dq 8.04 dq 8.08 dq 8.14 dq 8.08 dq 8.16 dq 8.14	s 8.80	s	8.72	s 8	62		s 8.62	
qq 4.15 qq 3.92 $J_{3',5'} = J_{4',5'} = 1$ dq 8.04 dq 8.02 dq 8.14 dq 8.08 dq 8.16 dq 8.14	qq 4.24	ъ	4.09	93	85	$J_{3',4'}=7$	98.8	
dq 8.04 dq 8.02 dq 8.14 dq 8.08 dq 8.16 dq 8.14	qq 4.29	фb	4.15	99 3.	92	$J_{3',5'}=J_{4',5'}=1$	40.06	
dq 8.14 dq 8.08 dq 8.16 dq 8.14	dq 8.00	ф	8.04	dq 8.	05		dq 8.03	
dq 8.16 dq 8.14	dq 8.09	ър	8.14	dq 8.	80		dq 8.11	
	dq 8.10	ф	8.16	dq 8.	14		dq 8.22	

Einstr. auf 1β -H \rightarrow 6-H dd (J=13, 8), 1α -H dd (J=8, 4), 2-H d (J=4) scharf; Einstr. auf 1α -H \rightarrow 2-H s; Einstr. auf 6-H \rightarrow 5-H s, 1β -H d (J=16); Einstr. auf 9-H \rightarrow 10-H s, 8-H s (in C_6D_6 und (D_3C_2CO) .

Da die Kopplungen $J_{1\beta,6}$ und $J_{5,6}$ für eine eindeutige a,a-Stellung sprechen, kann man aus Dreiding-Modellen mit einer entsprechenden Konformation entnehmen, daß das Vorliegen eines β -Epoxids sehr wahrscheinlich ist ($J_{1\alpha,2} = 4$ Hz, während Kopplung von 1β -H mit 2-H nur zur Verbreiterung der Signale führt, da hier der Winkel ca. 90°C beträgt).

1: M⁺ m/e 446(2%)
$$\longrightarrow$$
 RCO⁺ 83(100)

347(2) 346(2) $\xrightarrow{-\text{RCO}_2\text{H}}$ 246(5)

AngO

R'

-CO⁺

71(12)

403(0.2) $\xrightarrow{-\text{CO}}$ 375(3)

Aus den stärker polaren Fraktionen isoliert man nach mehrfacher Dünnschichtchromatographie ein weiteres, kristallisiertes Sesquiterpenderivat mit der Summenformel $C_{28}H_{40}O_8$, dessen ¹H-NMR-Spektrum bei 100 MHz erkennen läßt, daß ein β -Methyl-2-pentensäureester vorliegt. Außerdem beobachtet man ein Acetat-Methyl-Singulett, zwei Vinylprotonen und ein Dublett bei $\tau = 4.17$ (J = 3.5 Hz) sowie ein Multiplett bei 4.85 (2 H). Diese beiden Signale sind zweifellos Protonen zuzuordnen, die an C-Atomen stehen, welche die Esterreste tragen. Auch nach Zusatz von Eu(fod)₃ als Verschiebungsreagenz wird die Situation nicht so klar, daß eine Strukturzuordnung möglich wäre. Erst die Spektren bei 270 MHz, wiederum in verschiedenen Lösungsmitteln und Gemischen, erlauben zusammen mit systematischen Entkoppelungen eine Zuordnung aller Signale (s. Tab. 2).

Bei der Boranat-Reduktion erhält man ein Diol, wobei jedoch die Acetatgruppe nicht mehr vorhanden ist. Die Acetylierung liefert entsprechend ein Diacetat. Durch Behandlung mit saurem Aluminiumoxid erhält man hieraus eine Verbindung, bei der ein vorher vorhandenes Epoxid geöffnet wird. Das NMR-Spektrum läßt erkennen, daß es sich um ein 1,1-disubstituiertes Epoxid handeln muß [d 5.84 und d 6.05 ($J=12~{\rm Hz}$)]. Zusammen mit dem Massenspektrum lassen sich alle Ergebnisse am besten mit der Struktur 3 vereinbaren, wobei lediglich die Stellungen der Esterreste an C-6 und C-7 evtl. vertauschbar sind. Für 3 spricht jedoch, daß im Massenspektrum nur die Abspaltung des α -Methylbutyryloxy-Radikals zu beobachten ist, was bei 3 verständlich wäre, da so ein Allylkation gebildet wird.

Tab. 2. ¹H-NMR-Signale von 3 (270 MHz, TMS als innerer Standard, τ-Werte)

1α-H dd 7.76 1β-H dd 7.64 3β-H dd 7.23 4α-H dd 8.18 5β-H m 7.95 6α-H dd 4.89 7α-H d 4.20 9β-H m 7.9 10-H s(br) 4.77 10-H d 7.21 12-H d 7.21 12-H d 2.88 13-H d 8.76 OAc s 7.99 2-H tq 7.67	CDC(3 (2:1)	(D ₃ C) ₂ CO/ CDCI ₃ (1:2)	CDCI3	CDCl3/ C ₆ D ₆	C°D°	C,D,N	J (Hz)
ddd ag ag a	77.7 bb	dd 7.79	m 7.8	T.7 m	7.7 m	7.7 m	$J_{1a,1\beta} = 15; J_{1a,9} = 13$
66	•						$J_{18,9} = 0$ $J_{14} = 11 \cdot J_{244} = 3.5$
m dd							$J_{4.5} = 11; J_{4.9} = 11$
dd	m 7.95						$J_{5,6} = 11$
d s s s s s s s s s s s s s s s s s s s			-				$J_{6,7} = 3.5$
m 8 (br) d d d t			_				$J_{7,10}=1$
s(br) dq dq tq							
, , , , , , , , , , , , , , , , , , ,	_		_	_		_	
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6							
o de de se t						d 6.91	$J_{12,12}$ = 4.5
s d dq						d 7.12	
ტ ი ი დ						s 8.63	
b s pt			-			m 4.63	$J_{14,15} = 7$
s tq						d 8.61	
tq	s 7.97						
			tq 7.58			tq 7.38	$J_{2',3'}=J_{2',5'}=7$
E							$J_{3'1,3'2} = 12; J_{3',4'} = 7$
ppp						m 8.40	
+			_			t 9.05	
Þ							
tq.	tq 4.33	tq 4.33	-			tg 4.14	$J_{2'',6''}=1$
q(br)	_	_	_	_			$J_{4^{\prime\prime},5^{\prime\prime}}=7$
+							
Ф	d 7.87	d 7.88	d 7.88	d 7.92	d 7.92	61.7 b	

Bei Einstr. auf 3-H \rightarrow 4-H dd (J=11;11), 14-H q (J=7); auf 4-H \rightarrow 5-H d; auf 7-H \rightarrow 6-H d(J=11); auf 12-H \rightarrow 12-H s; auf 14-H \rightarrow 15-H s; auf 2'-H \rightarrow 5-H s; auf 4''-H \rightarrow 8''-H s (Aceton/CDCl₃ 1:2, sowie auch in den anderen Lösungsmitteln soweit möglich).

Die Anwesenheit der $H_3C-\dot{C}H-OAc$ -Gruppe wird im MS durch das Auftreten eines Ions der Masse 417, entsprechend $M-H_3C-\dot{C}H-OAc$, gestützt; ferner durch die bei der Boranat-Reduktion erfolgte Verseifung. Die erwähnte Verseifung dürfte durch Nachbargruppenwirkung erfolgen.

Bei 3 handelt es sich um einen ungewöhnlichen Sesquiterpentyp, von dem bisher nur das aus einer *Araliaceae* isolierte Oplopanon (6)³⁾ bekannt ist. 3 – wir möchten es Abrotanifolon nennen – entsteht biogenetisch vielleicht nach folgendem Schema:

Die oberirdischen Teile enthalten neben Germacren D ebenfalls 1 und 3 sowie zwei weitere Verbindungen, bei denen es sich um biogenetisch interessante Chinol-Derivate handelt. Die spektroskopischen Daten sind gut vereinbar mit den Strukturen 7 und 8:

6 HO CH₂CO₂R Hd 3.03
$$\theta$$
 R = CH₂CH₃ [q 5.82; t8.75 (J = 7)] Hd 3.80 8: R = CH₃ (s 6.24)

7 ist nach Misch-Schmelzpunkt und IR-Spektrum identisch mit synthetisch dargestelltem Material⁴⁾.

K. Takada, H. Minato und M. Ishikawa, Tetrahedron Suppl. 7, 219 (1966).
 A. Siegel und H. Keckeis, Monatsh. Chem. 84, 910 (1953).

Zusammenfassend läßt sich feststellen, daß die Inhaltsstoffe dieser Senecio-Art nicht den sonst in dieser Gattung häufig vorkommenden entsprechen ⁵⁾, da weder Furanoeremophilane noch einfachere Eremophilane isoliert wurden. Bemerkenswert ist ferner das Vorliegen von zwei verschiedenen Sesquiterpen-Typen.

Der Deutschen Forschungsgemeinschaft danken wir für die Förderung dieser Arbeit, insbesondere für Mittel zur Beschaffung eines 270-MHz-Gerätes.

Experimenteller Teil

IR: Beckman IR 9; in CCl₄; ¹H-NMR: Varian XL 100 und Bruker WH 270, TMS als innerer Standard, τ-Werte; MS: Varian MAT 711 mit Datenverarbeitung, Direkteinlaß, 70 eV; Optische Rotation: Perkin-Elmer-Polarimeter in CHCl₃.

Die frisch zerkleinerten Pflanzenteile⁶⁾ extrahierte man bei Raumtemp. mit Äther/Petroläther (30-60°C) (=Ä/PÄ) und trennte die erhaltenen Extrakte zunächst grob durch Säulenchromatographie (SC) (SiO₂, Akt.-St. II) und anschließend durch mehrfache Dünnschichtchromatographie (DC) (SiO₂, GF 254). Als Laufmittel dienten Ä/PÄ-Gemische. 200 g Wurzeln ergaben 15 mg 1 (Ä/PÄ 1:1) und 15 mg 3 (Ä/PÄ 1:1), während der Extrakt aus 1 kg oberirdischen Teilen 20 mg Germacren D, 15 mg 1, 25 mg 3, 40 mg 7 (Ä/PÄ 2:1) und 15 mg 8 (Ä/PÄ 2:1) lieferte.

 5α ,8-Bis(angeloyloxy)-2,3:10,11-diepoxy-2,3,10,11-tetrahydro-β-bisabol-4-on (1): Farbloses Öl. – IR: C = CCO₂R 1730, 1650; C = O 1720 cm⁻¹. – MS: M⁺ m/e 446.231 (2%) (ber. für C₂₅H₃₄O₇ 446.230).

$$[\alpha]_{24-c}^{h} = \frac{589}{-66} \quad \frac{578}{-68} \quad \frac{546}{-77} \quad \frac{436 \text{ nm}}{-123^{\circ}} \quad (c = 1.2)$$

10 mg 1 in 1 ml CH₃OH versetzte man mit 20 mg NaBH₄. Nach 5 min Stehenlassen bei Raumtemp. fügte man 10 ml Äther und 3 ml 2 N H₂SO₄ hinzu. Die neutralgewaschene Ätherphase wurde eingedampft und der Rückstand durch DC (Ä/PÄ 2:1) gereinigt. Man erhielt 9 mg 2, farbloses Öl. – IR: OH 3600; C = CCO₂R 1730, 1650 cm⁻¹. – MS: M + m/e 448.246(1%) (ber. für C₂₅H₃₆O₇ 448.246).

Abrotanifolon (3): Farblose Kristalle aus Äther/Petroläther, Schmp. 133°C. – IR: OAc 1745, 1240; C=CCO₂R 1730, 1650 cm⁻¹. – MS: M⁺ m/e 504.275 (3%) (ber. für C₂₈H₄₀O₈ 504.272).

$$[\alpha]_{24^{\circ}C}^{1} = \frac{589}{+13} \quad \frac{578}{+13} \quad \frac{546}{+12} \quad \frac{436 \text{ nm}}{-16^{\circ}} \quad (c = 0.8)$$

15 mg 3 wurden wie oben mit NaBH₄ reduziert. Nach DC (Ä) erhielt man 12 mg 4, farbloses Öl. – NMR: 7-H d 4.27 (J = 3.5 Hz), 2"-H tq 4.35 (J = 1; 1); 10-H s(br) 4.83; 10'-H s(br) 5.07; 6-H dd 4.97 (J = 11; 3.5); 2-H ddd 5.38 (J = 10; 10; 6); 14-H dq 5.91 (J = 7; 7); OH s(br) 6.48; 12-H d 7.24 und 7.42 (J = 4.5); 6"-H d 7.88 (J = 1); 15-H d 8.53 (J = 7); 13-H s 8.80; 4"-H t 9.11 (J = 7); 5"-H t 8.94; restl. Signale m (CDCl₃).

12 mg 4 in 1 ml Acetanhydrid erwärmte man mit 0.1 ml Pyridin und 10 mg 4-Pyrrolidinopyridin 1 h auf 70 °C. Nach Eindampfen i. Vak. nahm man in Äther auf, wusch neutral und reinigte den Eindampfrückstand durch DC (Ä/PÄ 1:1). Man erhielt 10 mg 5, farbloses Öl. – IR: OAc 1750,

⁵⁾ F. Bohlmann und Ch. Zdero, Chem. Ber. 107, 2912 (1974); F. Panizo, R. Rodriguez und S. Valverde, Ann. Quim. (Paris) 66, 571 (1970); W. Schild, Tetrahedron 27, 5735 (1971); L. Novotny, M. Krojidto, Z. Samek, J. Kohoutova und F. Sorm, Collect. Czech. Chem. Commun. 38, 739 (1973).

⁶⁾ Angezogen aus Samen vom Botanischen Garten Haren.

1240; $C = CCO_2R$ 1730, 1650 cm⁻¹. — MS: M⁺ m/e 548.298 (ber. für $C_{30}H_{44}O_9$ 548.299). — NMR (270 MHz): 7-H d 4.27 (J = 3.5 Hz); 2"-H tq 4.37 (J = 1; 1); 2-H ddd 4.49 (J = 10; 10; 6); 10-H s(br) 4.79; 10'-H s(br) 5.07; 14-H dq 4.87 (J = 7; 7); 6-H dd 4.97 (J = 11; 3.5); 12-H d 7.19 und 7.29 (J = 4); 9-H ddd 7.36 (J = 10; 10; 6); 4"-H q(br) 7.74 (J = 7); 6"-H d 7.80 (J = 1); OAc s 7.90 und 8.00; 15-H d 8.54 (J = 7); 13-H s 8.82; 5'-H d 8.84 (J = 7); 5"-H t 8.94; 4'-H t 9.11 ((CD_3)₂CO).

10 mg 5 wurden in Äther langsam über Al_2O_3 (schwach sauer, Akt.-St. II) filtriert. Man erhielt 6 mg eines farblosen Öls, bei dem nach dem NMR-Spektrum der Epoxid-Ring geöffnet worden ist (d 5.84 und 6.05 (J=12); die übrigen Signale entsprechen denen von 5).

1-Hydroxy-4-oxo-2,5-cyclohexadien-1-essigsäure-äthylester (7): Farblose Kristalle aus Äther/Petroläther, Schmp. 71°C (Lit. 5) 71°C). – IR: OH 3500; CO₂R 1720, C=C-C=O 1675, 1640 cm⁻¹. – MS: M⁺ m/e 1°6.073 (14%) (ber. für C₁₀H₁₂O₄ 1°6.074); – C₂H₅OH 150 (32); – CH₂CO₂C₂H₅ 10° (100); CH₂=C(OH)OC₂H₅ * 88 (°5) (Mc Lafferty).

1-Hydroxy-4-oxo-2,5-cyclohexadien-1-essigsäure-methylester (8): Farblose Kristalle aus Äther/Petroläther, Schmp. 77 °C. – IR: OH 3490; CO_2R 1720; C=C-C=O 1670, 1630 cm⁻¹. – MS: M⁺ m/e 182.058 (100%) (ber. für $C_9H_{10}O_4$ 182.058); – CH_3OH 150 (22); – $CH_2CO_2CH_3$ 109 (70); $CH_2=C(OH)OCH_3^+$ 74 (52) (Mc Lafferty).

[455/75]